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Abstract

The dynamics of a liquid capsule enclosed by an elastic membrane in a shear flow is investigated using a front tracking
finite difference method. We compute deformation, orientation and tank-treading of the capsule, as functions of the forcing
(capillary number) and the viscosity ratio for two different membrane constitutive equations – Neo-Hookean and Skalak.
The computed results compare very well with those obtained by high-order boundary element methods as well as the small
deformation perturbation analysis. The simulation shows that a drop and a capsule, even under those circumstances that
result in the same Taylor deformation criterion for both, attain very different shapes. The tank-treading period even for
different capillary numbers as well as capsules with different constitutive laws, is primarily determined by the deformation
and the viscosity ratio. At low capillary numbers the simulation predicts buckling due to large compressive stresses on the
membrane. However, we show that in shear, unlike in extension, the tank-treading motion can inhibit the buckling insta-
bility and gives rise to a stable evolution even in presence of membrane compressive stresses. At large capillary numbers the
capsule experiences large bounded shape followed by tip buckling indicating possible membrane breakup.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The membrane of a biological cell comprises of a lipid bilayer supported by a network of trans-membrane
proteins that gives rise to an elastic property for the membrane. Synthetic capsules with elastic polymerized
membranes also have important applications in many biomedical processes such as drug delivery and artifi-
cial-organ manufacturing. As a result, much effort has been devoted to understand the dynamics of elastic cap-
sules in well defined flows. The first theoretical study of elastic capsules was conducted by Barthès-Biesel [1]
and Barthès-Biesel and Rallison [2] using a perturbation method for small capsule deformation. Subsequently,
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a number of simulation studies have been executed to investigate large deformation and breakup of capsules.
Most of these studies were performed using the boundary element method (BEM), which is limited to the iner-
tia-less Stokes flow of a viscous fluid. However, capsule dynamics in real life applications could arise with
additional complexities – both the membrane and the bulk fluid might be viscoelastic for biological systems.
The processing flows in many industries are turbulent with inertia and fluctuations. Finite inertia, viscoelas-
ticity and other complexities motivate the present study to evaluate the capability of an alternative to BEM.
We investigate the capsule dynamics in a steady shear flow using a front tracking finite difference method [3].
We carefully investigate our results vis-à-vis those of previous BEM investigations giving special attention to
issues such as criteria for membrane instabilities and failure.

In the past, a number of different membrane constitutive equations have been used to describe the mem-
brane response. Kraus et al. [4] simulated steady tank-treading motion [5] of an area-incompressible mem-
brane with a finite bending rigidity in shear, and predicted the tank-treading frequency (TTF) to be
proportional to the shear rate. Navot [6] used a network of connected springs to model the polymeric mem-
brane, and found bounded deformation at large shear rates.

Pozrikidis [7] and Ramanujan and Pozrikidis [8] modeled the membrane using the so called zero-thickness
shell, and showed its equivalence to the Neo-Hookean model in predicting capsule deformation. They inves-
tigated breakup of capsules in shear [7] with simulations using a structured curvilinear coordinate to describe
the membrane. Based on previous experimental observations [9], the authors suggested two possible failure
mechanisms: membrane thinning and excessive tension, both of which occurring at the same location near
the capsule tip. They argued that the location of membrane failure therefore might be insensitive to the precise
rupture mechanism. Ramanujan and Pozrikidis [8] adopted an unstructured triangular discretization to
remove the numerical instability due to uneven discretization in the curvilinear system. Using such a discret-
ization, the authors were able to obtain stable bounded capsule deformation even at high shear rates. We note
that a compressive stress was found at the high-curvature tips of largely deformed capsules in their numerical
results [8, Fig. 8], which assumes importance in the current study specially in view of the later investigation by
Barthès-Biesel and co-workers (see below). The compressive stress near the capsule tips can cause buckling
and induce membrane failure.

Barthès-Biesel and co-workers [10,11] used a structured discretization of the membrane. They investigated
deformation of a spherical capsule with a higher order BEM, and therefore with a more accurate computation
of surface geometry than has been achieved before. They found compressive stresses at both low and high cap-
illary numbers, and stated that compressive stress directly causes the membrane to be unstable and to develop
numerical (unphysical) buckles in the absence of bending rigidity [10]. The authors numerically identified an
interval of capillary numbers for each particular flow and membrane constitutive law where the stress is tensile
everywhere on the membrane, and therefore the capsule can achieve a stable shape. Outside the interval, they
found that the membrane develops compressive stresses and becomes unstable by a mechanism similar to that
of Euler buckling. In a subsequent work, they imposed an isotropic tensile prestress [12] on the membrane in
order to overcome the destabilizing effects of compressive stress. We note that the stability of a membrane
surrounded by a viscous fluid is affected not only by the stresses on the membrane, but also by its motion
(e.g. tank-treading). It should be noted that although a qualitative comparison between simulations and exper-
iments [9,13] has been obtained, a quantitative criterion for capsule instability and buckling is currently not
available.

There are other grid-based immersed interface methods, such as volume of fluid [14], level set [15] and phase
field [16], which offer similar advantages over boundary elements in handling multiphase flows with moving
boundaries. They along with front tracking have been used to investigate effects of inertia [17–21] and visco-
elasticity [22–28] on drops characterized by isotropic surface tension. Rheology of an emulsion of such drops
at finite inertia has also been studied [29–32]. However, much less attention has been paid to modeling elastic
capsules using such methods. One exception was the modeling of red blood cells by Eggleton and Popel [33]
using a front tracking method (FT). Recently, FT is used to simulate two-dimensional capsules [34]. Com-
pared to other immersed interface methods, FT utilizes a separate mesh to describe the membrane, which
allows easy tracking of deformation history for calculating elastic forces. Limited by computational costs,
Eggleton and Popel’s simulation was conducted on a coarse discretization for short periods of time. Effects
of viscosity ratio between the dispersed and continuous fluids were not considered. In view of its widespread
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force using Dirac delta function d(x � x0); the force is present only at the boundary. We note that the sin-
gle-fluid formulation (1) is completely equivalent to the conventional description involving separate equa-
tions in each domain with kinematic and dynamic conditions at the interface. Specifically, the jump
condition at the membrane interface is obtained by considering momentum conservation in a pillbox strad-
dling the membrane (Fig. 1a). In the limit of pillbox thickness across the membrane going to zero, momen-
tum conservation takes the following form:
Z

A
ðrðdÞ � rðcÞÞ � ndS ¼ �

Z
oA

sm � bdC ¼ �
Z

oA
sm � ðt� nÞdC ¼

Z
A
rs � sm dS

¼ �
Z

A
fm dS () ½rðdÞðxBÞ � rðcÞðxBÞ� � n ¼ �fmðxBÞ; xB 2 oB; ð2Þ
where, r(d) and r(c) are the stress in the fluid inside and outside the capsule, and n is the outward normal on the
footprint A of the pillbox on the capsule surface enclosed by the contour oA. t is the anticlockwise unit vector
tangential to the contour,sm is the two-dimensional stress tensor, b is the normal to the contour oA and $s is
the surface divergence operator.

The membrane follows the local fluid velocity which can be expressed as
dxB

dt
¼ uðxBÞ ¼

Z
X

uðxÞdðx� xBÞdV ðxÞ; xB 2 oB; ð3Þ
where the last part relates the velocity at a membrane point to the field velocity in the entire domain X. The
terms involving delta function in (1) and (3) anticipate the front tracking implementation.

2.2. Membrane forces

The elastic stress in the membrane is determined by the initial membrane configuration and its deformation
history via two-dimensional constitutive laws. Barthès-Biesel et al. [35] compared the behavior of membranes
with different hyperelastic constitutive laws, where the membrane stress–strain relations can be derived from a
strain-energy function. They found that in the limit of small strain, all different constitutive relations reach a
common limit of Hooke’s law in terms of shear modulus Gs and Poisson ratio ms. At larger strains, the
responses of different laws differ. Two laws (Neo-Hookean and one due to Skalak) are considered in this
paper; their results are summarized below [35].

A Neo-Hookean membrane (denoted by NH below) is an example of a class of models that assume the
membrane to be an infinitely thin sheet of isotropic volume-incompressible elastic media. The area of the
membrane is allowed to change and its change is balanced by the thinning of the membrane. Its strain-energy
function is:
W ¼ Gs
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; ð4Þ
where k1 and k2 are the principal stretches on the membrane surface. The principal membrane stresses are:
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ð5Þ
At large deformation, the Neo-Hookean membrane was found to display strain-softening behavior [35].
Skalak et al. [36] proposed a constitutive model for the red blood cell membrane (denoted by SK below),

that incorporates area-incompressibility. The strain-energy function is given as:
W ¼ Gs
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A large value of C indicates approximate area-incompressibility. The principal membrane stresses are:
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ð7Þ
When C is not large, the model predicts a strain-hardening behavior [35]. From relative deformation, principal
directions g1, g2 and corresponding stretches are obtained. Eqs. (5) and (7) obtain principal stresses. The stress
tensor in an element then is
sm ¼ sm
1 g1 � g1 þ sm

2 g2 � g2; ð8Þ

which then can be used for calculating the membrane force fm in (1). In the present formulation, we do
not consider stresses due to membrane bending. This completes the mathematical description of the
problem.

3. Numerical implementation

The single-fluid formulation (1) presents a system of partial differential equations with spatially varying
coefficients, albeit with discontinuities and singular forces. Conventionally, the Navier–Stokes equation needs
to be solved for each phase, matching boundary conditions at the interface. The front tracking method pre-
sented here treats the entire flow system as a single phase with a sharp but continuous variation of properties
and forces in a finite-thickness region across the interface [3,17,19].

The entire computational domain is discretized by a 3D staggered (volume) grid. The capsule membrane
described by the interface (front) is separately discretized by a triangular mesh (Fig. 1b). Smoothed represen-
tations of the properties (e.g. viscosity or density) are obtained by solving a Poisson’s equation with a source
that indicates the jump in the property values at the interface. The present article considers the density-
matched phases. A smooth surrogate is used for the delta functions appearing in this source term as well
as in (1) and (3) [37]
Dðx� xBÞ ¼ D1ðx� xBÞD1ðy � yBÞD1ðz� zBÞ;

D1ðx� xBÞ ¼
1

4Dx
1þ cos

p
2Dx
ðx� xBÞ

� �
; x� xBj j 6 2Dx:

ð9Þ
Dx is the grid spacing for the discretization. As a result, we obtain a sharply varying (over 4Dx) smoothed
material properties and therefore a smoothed force in (1) due to membrane once we know fm. The actual rep-
resentations of the singular terms in (1) and (3) become
Z

oB
fmðx0Þdðx� x0ÞdSðx0Þ ¼

X
j

fmðx0jÞDðx� x0jÞDSj;

uðxBÞ ¼
Z

X
uðxÞdðx� xBÞdV ðxÞ ¼

X
i

uðxiÞDðxi � xBÞDV i:

ð10Þ
i is over all volume grid points, and j is over all surface elements.
The membrane force is computed using the deformation of the triangular element on the front from its ini-

tial undeformed configuration [33,38]. During deformation, each element remains flat and the strain is homo-
geneous within each element. To calculate the strain tensor for each element, we first transform (by
displacement and rotation) both the undeformed and deformed elements in 3D space into the same 2D local
coordinate as shown in Fig. 1d. Node 1 and node 10, and the direction of edge 12 and 1020 coincide with each
other. Such rigid motion does not result in any deformation. For linear triangular element, the relative dis-
placements Dv of any point P are functions of the displacement of the ith node Dvi as [38]:
Dv ¼
X3

i¼1

NiDvi; ð11Þ
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where Ni is the linearly interpolating function commonly used in finite element:
Ni ¼
aixþ biy þ ci

2Ae
0

;

ai ¼ yk � yj;

bi ¼ xk � xj;

ci ¼ xjyk � xkyj;

2Ae
0 ¼ aixi þ biyi þ ci;

ð12Þ
j and k terms are cyclic. The strain tensor Ee therefore is:
Ee ¼
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The principal stretches (eigenvalues) k1, k2 and their directions (eigenvectors) g1, g2 are computed for Ee.
With the elastic media assumed to be isotropic, the principal stresses are in the same directions as the principal
stretches. The principal stress components are obtained using Eqs. (5) and (7). A stress tensor is then com-
puted for each element using Eq. (8). Elastic forces on the element edges are calculated from the stress tensor
dFm ¼
Z

edge

sm � bdC; ð14Þ
where b is the normal to the edge. The total force exerted on each membrane node is computed by adding the elas-
tic forces acting on all the element edges connecting that node. Note that the implementation is applicable to
membranes governed by arbitrary hyperelastic constitutive laws different from Eqs. (4) and (6) considered here.

We solve the resulting equation on a staggered grid by an operator-splitting projection finite-difference
method. The first step of the two-step method finds an intermediate velocity u* by
qnþ1u� � ðquÞn

Dt
¼ �r � ðquuÞn þ Fn þr � sn; ð15Þ
where sn is the viscous stress. Fn the force due to membrane suitably smeared using relation such as (10). The
spatial derivatives are approximated by central differences in their conservative form. The final velocity is com-
puted using the pressure-correction step
unþ1 � u�

Dt
¼ � 1

qnþ1
rpnþ1: ð16Þ
Requiring incompressibility be satisfied by the final velocity we obtain a Poisson’s equation for pressure:
r � 1

qnþ1
rpnþ1

� �
¼ 1

Dt
r � u�: ð17Þ
We use a multi-grid method for solving the pressure Poisson’s equation.
An explicit scheme for calculating viscous term suffers from restrictions on time steps, i.e. Dt < 0.125(Dx)2q/

l, for low Reynolds numbers. To overcome this restriction, we treat some of the diffusive terms implicitly in
alternate spatial directions (ADI). The viscous terms from Eq. (15) can be collected together as
r � s ¼ Dxy þ Dyz þ Dzx þ Dzz þ Dyy þ Dxx; ð18Þ

where Dxy, Dyz, Dzx are the mixed derivatives, and are computed by an explicit scheme. Dxx, Dyy, Dzz are the dou-
ble derivatives to be treated implicitly. We split the predictor step further and treat the diffusive terms by ADI:
qnþ1u���� � ðquÞn

Dt
¼ �r � ðquuÞn þ Fn þ DxyðunÞ þ DyzðunÞ þ DzxðunÞ;

qnþ1 u��� � u����

Dt

� �
¼ Dzzðu���Þ;

qnþ1 u�� � u���

Dt

� �
¼ Dyyðu��Þ;
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qnþ1 u� � u��

Dt

� �
¼ Dxxðu�Þ: ð19Þ
Each implicit equation above gives rise to a tri-diagonal system that is directly solved without iteration. The
convergence of the scheme is ensured by prescribing for the intermediate velocities at the boundary as:
u� ¼ u�� ¼ u��� ¼ u���� ¼ unþ1: ð20Þ

The ADI scheme increases the time step by one order of magnitude.

4. Results and discussion

We simulate the motion of a capsule in an imposed shear: imposed velocity ui is given as:
ui
x ¼ _cy; ui

y ¼ ui
z ¼ 0; ð21Þ
where _c is the shear rate. The capsule is initially spherical and placed at the center of the flow. The effects of
non-spherical unstressed shapes are not considered in this paper. The simulations are performed in a rectan-
gular computational domain (Fig. 2). In terms of the undeformed capsule radius R, the domain has the size of
10R � 10R � 5R with 10R in the velocity (x) and gradient directions (y), and 5R in the vorticity direction (z).
Periodic boundary conditions are imposed in the velocity (x) and vorticity (z) directions, whereas wall bound-
ary conditions are imposed in the direction of velocity gradient (y). We use a uniform grid with resolution
96 � 96 � 48 for the domain and a front mesh with 10,242 nodes and 5120 elements for tracking the mem-
brane deformation, unless otherwise specified. The ratio of an element edge to the grid spacing is 0.66 for
the initial undeformed configuration which is sufficient to ensure an appropriate grid-front property transfer.
The resolution of our discretization is much higher than that adopted by previous front tracking study of cap-
sules [33]. The numerical convergence of our simulation is presented below.

The physical problem is governed by several non-dimensional groups: Re ¼ qR2 _c=lc, e ¼ lcR _c=Gs and
k = ld/lc, where subscripts ‘‘d” and ‘‘c” represent the dispersed and continuous phases, respectively. The Rey-
nolds number Re represents the ratio of the inertial to the viscous forces and the capillary number e the ratio of
the viscous force relative to the elastic force due to membrane deformation. Ramanujan and Pozrikidis [8]
X

Y

Z

Fig. 2. Spherical capsule is deformed in an incidentally imposed shear. The simulation is performed in a rectangular box.
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used Young’s modulus Es = 3Gs, leading to a different definition of capillary number. Note that the explicit
nature of the algorithm, even though an ADI [17] implementation alleviates the restrictions on time steps, pre-
cludes achieving the Stokes limit (Re = 0). Our simulations are performed at Re = 0.1 to approximate Stokes
flow. Simulation shows that ADI allows a non-dimensional time step _cDt ¼ 5e� 4 for achieving convergence.
In the following, we first evaluate the numerical accuracy of our simulation, then present and compare our
simulation results for varying capillary number e, viscosity ratio k, and membrane constitutive laws [Eqs.
(3) and (7)].

4.1. Numerical accuracy and comparison with drops

We have previously investigated the grid convergence of the front tracking method for simulating a drop in
a simple shear and found that 96 � 96 � 48 is sufficient for accurate description of drop dynamics [30]. The
effects of finite domain size were also found to be negligible. Here we reinvestigate the convergence, for the
capsule membrane introduces new forces which might influence the accuracy. In a shear flow, a spherical cap-
sule, like a drop, transiently elongates to an approximate ellipsoidal shape and aligns itself with its largest axis
forming an angle h with respect to the flow direction (x). The deformation of the capsule in shear flow is char-
acterized by a parameter Dxy given by Taylor [39,40]:
Dxy ¼
L� B
Lþ B

; ð22Þ
where L and B are, respectively, the lengths of the larger and smaller axes (in the x–y plane) of the ellipsoid
with the same inertia tensor as the deformed capsule [8]. The inertia tensor is defined as:
Id ¼
Z

V
ðr2I� xxÞd3r ¼ 1

5

Z
oV
ðr2xI� xxxÞ � nd2r; ð23Þ
where I is the identity tensor. The relations between the eigenvalues Id
L;B;W of Id and the major axes of the ellip-

soid are:
L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

2qV
Id

B þ Id
W � Id

L

� �s
;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

2qV
Id

L þ Id
W � Id

B

� �s
;

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

2qV
Id

L þ Id
B � Id

W

� �s
:

In Fig. 3a and b, evolutions of the deformation and the orientation angle (Neo-Hookean membrane
e = 0.6, k = 1.0) are compared at different grid resolutions and time steps. With increasing grid resolution,
the solutions converge. Considering the high computational cost at high resolution, we choose
96 � 96 � 48 for most simulations. The steady state solutions attain small numerical errors:
jD96

xy � D160
xy j=D160

xy ¼ 3:9%, jh96 � h160j/h160 = 1.5%. Decreasing time step to one-fifth of the original does
not significantly alter the solution as well: jD5e�4

xy � D1e�4
xy j=D1e�4

xy ¼ 0:8%, jh5e�4 � h1e�4j/h1e�4 = 1.2%. In
Fig. 3c and d, we see that increasing the size of the computational domain in x and z (periodic boundary)
directions generates almost identical solutions. The wall boundary in y direction has a small effect on defor-
mation jD10R

xy � D15R
xy j=D15R

xy ¼ 0:4% and orientation angle jh10R � h15Rj/h15R = 1.4%. On a 3 GHz desktop com-
puter, a 96 � 96 � 48 simulation takes 3.5 s to compute one time step, whereas a 160 � 160 �80 simulation
takes 17.5 s for the same.

Although dynamics of a simple drop as well as that of a capsule in shear have been extensively investigated,
the difference between the two has not been compared and discussed much in the literature. We simulate
a capsule with Neo-Hookean (NH) membrane at e = 0.5, k = 1.0 and a drop at Ca ¼ lcR_c=rs

¼ 0:3333; k ¼ 1:0, where rs is the surface tension. The values of e and Ca are chosen such that the final defor-
mation, and to a lesser extent final orientation angle are very similar in these two cases, although they undergo
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4.2. Deformation, orientation and tank-treading: comparison with BEM

We present a systematic comparison of front tracking and other methods in predicting capsule deforma-
tion, orientation and tank-treading behavior. The membrane constitutive law and the viscosity ratio are var-
ied. Our simulation results are compared with the first-order analytical perturbation theory by Barthès-Biesel
[1] and Barthès-Biesel and Rallison [2] (represented by Analytic BB in the figures) and BEM simulation by Lac
et al. [10] (represented by BEM LBPT in the figures) and by Ramanujan and Pozrikidis [8] (represented by
BEM RP in the figures).

In Fig. 5a, the transient deformation for Neo-Hookean (NH) capsules in shear is shown at varying capillary
numbers e. At low capillary numbers e = 0.075, 0.15, an equilibrium deformation is first reached, then the
deformation shows a slow decrease. The decrease in deformation indicates the formation of unstable buckles
due to compressive stresses developed on the capsule surface. This issue will be discussed later. To compare
with previous results obtained using BEM, we define a stable deformation similarly as other groups did
[7,8,10]: we consider the capsule to be stable up until the instance when the equilibrium deformation starts
to decrease and call the short-period equilibrium deformation as the stable deformation, even if the capsule
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Fig. 5. Deformation (a) and orientation angle (b) vs. time for NH membrane at varying capillary numbers at k = 1.0 (same legends for
curves in (a) and (b)); (c) and (d) shows the corresponding stable deformation and orientation angle vs. capillary number, with results by
different methods compared.
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will become unstable afterwards. As the capillary number is increased to e = 0.3, 0.6, the capsule maintains an
equilibrium shape for long time after transient deformation. The stable deformation increases with increasing e
as a result of increasing viscous stretching relative to the elastic constraining force on the membrane. Further
increase of the capillary number to e = 1.2 leads to a transient overshoot followed by a large bounded defor-
mation. However, our simulation could not continue for _ct > 7 due to the numerical difficulty with high-cur-
vature tips for highly elongated capsules.

Fig. 5b shows the evolution of orientation angle for NH capsules in shear at varying capillary numbers e. At
low capillary numbers e = 0.075, 0.15, the orientation angle first reaches an equilibrium value, then displays
small oscillations due to the formation of buckles. Similar to deformation, we define a stable orientation angle
as the short-period equilibrium angle before the instability sets in. At intermediate capillary number e = 0.3,
0.6, h maintains a stable value for a long time. An increase in capillary number causes a decrease in h, and the
capsule becomes more aligned with the flow direction. At a high capillary number e = 1.2, h reaches an equi-
librium value before the simulation stops due to numerical difficulty.

In Fig. 5c and d, we plot, respectively, the stable deformation and orientation angle as functions of capillary
number and compare our simulation with other methods. The perturbation theory predicts a linear relation
between deformation and capillary number in the small deformation range: Dxy = 25e/12 and a constant ori-
entation angle h = p/4. In Fig. 5c and d our simulation matches well with the analytic theory and results from
BEMs. h decreases to less than p/4 at non-zero e. At intermediate capillary numbers (0.15 < e < 0.6), Dxy(h) by
FT is slightly lower (higher) than BEM predictions. Dxy by front tracking becomes larger than that by BEM
RP executed by Ramanujan and Pozrikidis because we simulated a NH membrane, which at high e has a
slightly larger deformation than that obtained by the zero-thickness shell model [8,10], even though for low
values of e they are shown to be equivalent. Lac et al. [10] used a structured mesh combined with curvilinear
coordinates to discretize the membrane surface. As the authors pointed out, the simulation could not continue
when the poles in the curvilinear coordinate move to the locations under compressive stress. Therefore, they
were not able to capture bounded large deformations with compressive surface stress near the tips. On the
other hand, Ramanujan and Pozrikidis [8] used an unstructured triangular mesh that effectively relieved the
numerical instability due to singularity at the poles of the structured mesh. Therefore, they were able to sim-
ulate large capsule deformation for e up to 3.0. We used a similar unstructured mesh and found stable large
deformation for e 6 1.0. The lower-order stress computation compared to BEM RP executed by Ramanujan
and Pozrikidis might explain the numerical difficulties in our simulation for high e (Fig. 5a). We conclude that
our simulation matches well with higher order BEM simulations in predicting stable deformation as well as
orientation angles.

In Fig. 6a and b, we compare the effects of viscosity ratio – which exerts significant effects on both the defor-
mation and the inclination angle – on a capsule with an NH membrane. At k = 0.2, analytical results due to
Barthès-Biesel matches with front tracking and BEM at small capillary numbers (e < 0.075). At larger capil-
lary numbers, front tracking and BEM match very well in predicting both deformation and orientation angle.
Similar to the case of a drop [41], an increased viscosity ratiok = 5.0 leads to an increased alignment of the
capsule with the flow (compare Fig. 6b with Fig. 5c). Consequently, the capsule experiences less stretching
(in a shear flow the stretching is maximum at h = p/4) and leads to a decreased deformation. The opposite
happens for viscosity ratio lower than unity, k = 0.2. We note that the front tracking simulation predicts a
slightly larger deformation and orientation angle than BEM RP at k = 5.0. Fig. 6c and d compares our sim-
ulation with BEM results for Skalak (SK) membrane at varying C. Larger C implies a larger area-dilation
modulus and stronger resistance to area compression. A perturbation analysis predicts the relation between
stable deformation and capillary number as Dxy = (2 + 3C)e/(1 + 2C). The analytical results almost overlap
for C = 1 and 10 cases, and therefore have very limited applicability. Our simulation matches better with
BEM LBPT due to Lac et al. at smaller C (C = 1) than at larger C (C = 10), implying limitation of the
low-order surface stress calculation of FT in accurately modeling high area-dilation modulus. Similar numer-
ical problems were also experienced by Eggleton and Popel while simulating red blood cells [33]. The simula-
tion was unstable for membranes with high area-dilation modulus. Even with the high-order BEM, Lac et al.
[10] observed that the numerical instability exists for C > 10 if the time step is not significantly decreased.

In Fig. 7, we explore the tank-treading behavior of the capsule. As the capsule reaches an equilibrium shape
in the long-time limit, the normal velocity on the membrane interface vanishes while the tangential velocity
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5010 X. Li, K. Sarkar / Journal of Computational Physics 227 (2008) 4998–5018
attains a finite value. Each membrane patch moves along a fixed circulating trajectory on the membrane sur-
face. Such periodic motion was first identified for red blood cells in shear flow [5] and named the ‘‘tank-tread-
ing motion”. Fig. 7a shows at varying e the trajectories of interface point initially at the top of the sphere.
Larger e leads to a larger capsule deformation and a larger orbit for the interface point to circulate. It also
takes a longer time for the interface point to enter the circulation orbit. As we mentioned before, the capsule
at small e forms buckles on its surface. The buckles circulate along the membrane surface as they develop. As a
result, the trajectory (at e = 0.075) of the interface point does not display oscillations or ripples. However, the
trajectory is affected by an instability showing a deviation from the first circulating orbit in the second period.
In Fig. 7b, we compare our FT simulation with other BEMs in predicting the tank-treading period
ðTTP ¼ T tt _cÞ. The tank-treading period is evaluated as the difference between the time when a membrane node
in the center shear plane leaves a fixed point in space and the time when it returns to this point after one cir-
culation. A slightly different way of computing it was offered by Lac et al., and was shown to be equivalent to
the current procedure [10]. At e = 0, the capsule rotates as a rigid sphere in shear flow with period 4p. TTP
increases with increasing e due to increased deformation and longer circulating orbits. An higher viscosity
value inside the capsule retards the fluid motion inside and the motion at the membrane interface [8]. As a
result, the tank-treading period increases with k. The front tracking simulation matches other BEM



ε

T
T

P

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

14 14

16 16

18 18

20 20

22 22

24 24

26 26

28 28

30 30

32 32

34 34FT NH λ=1.0
FT NH λ=0.2
FT NH λ=5.0
BEM LBPT NH =1.0
BEM RP NH =1.0
BEM RP NH =0.2
BEM RP NH =5.0

ε

T
T

P

0

0

0.5

0.5

1

1

1.5

1.5

2

2

14 14

16 16

18 18

20 20

22 22

24 24

26 26

28 28

30 30

32 32

34 34

36 36

38 38

40 40

FT NH
FT SK C=1.0
FT SK C=10.0
BEM LBPT SK C=1.0
BEM LBPT SK C=10.0

ε=0.075
ε=0.15
ε=0.3
ε=0.6

Dxy

T
T

P

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

14 14

16 16

18 18

20 20

22 22

24 24

26 26

28 28

30 30

32 32

34 34NH λ=1
SK λ=1 C=1
SK λ=1 C=10
NH λ=0.2
NH λ=5.0

Fig. 7. (a) Trajectory of an interface point as the membrane experiences tank-treading, NH at k = 1.0; non-dimensional tank-treading
period (TTP) vs. capillary number predicted by different methods for NH in (b) and SK at k = 1.0 in (c); TTP vs. stable deformation is
shown in (d).

X. Li, K. Sarkar / Journal of Computational Physics 227 (2008) 4998–5018 5011
calculations at small e. At large e, two BEM computations (LBPT and RP) at k = 1.0 predict different TTP
due to the difference in numerical implementation, and extreme sensitivity of the computation. The front
tracking results display the same level of variability with either result. In Fig. 7c, we report a comparison
between our simulation and BEM due to Lac et al. in predicting tank-treading period for an SK membrane.
Our simulation matches with the BEM in the range of e investigated. For comparison, we also provide the case
of an NH membrane, which produces the same result as an SK membrane in the limit of small e (i.e. small
deformation). Note however that the SK membrane results in a significantly decreased tank-treading period
at larger e. It is observed that larger C (larger area-dilation modulus) leads to a smaller deformation and a
slower tank-treading motion (smaller TTP). In the limit of infinitely large C, the TTP would decrease to
4p, that of a rigid sphere in shear. In their BEM investigation, Lac et al. [10] also reported a one-to-one map-
ping between deformation and tank-treading period at k = 1.0; the data for different membrane rheology fall
on the same curve. Similar phenomena are confirmed by our simulation as shown in Fig. 7d. However, we find
that the collapse is disrupted for non-unity viscosity ratios. The tank-treading period indicates the time that a
fluid particle takes to traverse the deformed interface. Its increase with increased deformation at a particular
viscosity ratio is a result of the longer length that the fluid particle has to traverse. On the other hand, higher
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(lower) viscosity ratio retards (accelerates) the tangential velocity leading to an increase (decrease) in TTP at
the same deformation.

4.3. Membrane stress and buckling instability at low capillary number

In this section, we discuss the issue of capsule instability at low capillary numbers. In their early work [1,2],
Barthès-Biesel and co-workers reported a compressive stress on the membrane using an asymptotic analysis.
They have recently performed a numerical investigation of its impact on the stability of a capsule [10]. They
used a high-order BEM to find compressive stress on the membrane. They stated that in the absence of bend-
ing rigidity, it causes the membrane to form buckles, leading to instability like the Euler instability for elastic
rods. For shear and extension and various membrane constitutive equations, they numerically identified a
range of capillary numbers where the stress is tensile everywhere on the membrane, and therefore the capsule
is stable. In Fig. 8, we show capsule shapes from our front tracking simulation for a Neo-Hookean (NH)
membrane at e = 0.6 along with the distribution of the compressive stress on the capsule surface. Lac et al.
[10] reported tensile stresses everywhere on the capsule surface for the range 0.45 < e < 0.63 at simple shear.
Note that Lac et al. utilized bi-cubic B-splines basis functions to describe surface quantities that have contin-
uous second derivatives. The stress plotted in Fig. 8 is obtained using a lower-order calculation based on the
deformations of flat elements. Take the NH membrane [Eq. (5)] for example; if numerical error causes either
k1 < k�2

2 or k1 < k�0:5
2 , one stress component will be negative (compressive). However, we see that the numer-

ically computed compressive stress is restricted to a narrow band, not affecting the global solution much, as
seen in the comparisons in Figs. 5–7, and the capsule remains stable without forming buckles. We note that in
contrast to the simulation of Lac et al., in FT the membrane force is smeared over several grid points (about
4Dx) across the membrane and therefore experiences a local averaging which may arguably relieves some of
the destabilizing forces.

On the other hand, the front tracking simulation does capture the buckling instability at low capillary num-
bers, as seen in Fig. 9. For capillary numbers below e 	 0.15, the deformation shows a steady decline with time
and eventually small oscillations occurs. For e = 0.075, shapes clearly show that the decline in deformation
coincides with an appearance of surface wrinkling. Since the buckles are unstable, the deformation shows
small oscillations. At such a low capillary number, the compressive stress dominates on the membrane surface,
as shown by the white region (in contrast to Fig. 8). The distribution of the compressive stress becomes highly
irregular as the unstable buckles develop.

As pointed out by Lac et al. [10], who saw similar buckles, in the absence of bending rigidity, the simulation
cannot be trusted to represent the true physics once the buckles appear and the instability sets in. We inves-
tigate this issue by comparing the grid dependence of capsule shapes (Neo-Hookean or NH membrane at
k = 1.0) with buckle formation (e = 0.075) and without buckle formation (e = 0.6) in Fig. 10. For the buckled
capsule in Fig. 10a–c, we find higher grid resolution 160 � 160 � 80 in Fig. 10b generates a smoother surface
with more regular folds than 96 � 96 � 48 in Fig. 10a. However, when a denser mesh with 40,962 nodes for
the membrane is used in Fig. 10c, the capsule shape displays drastically different buckles from those in Fig. 10a
and b. For the stable capsule with smooth surfaces in Fig. 10d–f, we find the capsule shape is independent of
grid and front resolutions. Therefore, we conclude that for the case of an unstable capsule, our simulated
Fig. 8. The distribution of compressive stress (white region) on capsule surface at different time instants; NH membrane at e = 0.6,
k = 1.0.
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might lead to material failure locally at the capsule tips and finally cause capsule breakup. In fact, a compres-
sive stress has also been observed for highly deformed capsules in the BEM simulation by Ramanujan and
Pozrikidis [8, Fig. 8]. Lac et al. [10] also observed compressive stress and protruded tips for capsules at high
capillary number, similar to Fig. 12c. They argued that membrane compression arises from the torque exerted
by the vorticity in shear flow. Based on these findings, we suggest that buckling at capsule tips can serve as a
possible mechanism for capsule breakup.

Simulations by Pozrikidis [7], experiments by Chang and Olbricht [9] and the present simulation suggest
multiple breakup mechanisms – membrane thinning, excessive tension and tip-buckling – all of which occur-
ring near the capsule tip. The actual breakup of a capsule is determined by the competition of these mecha-
nisms locally near the tip. It would be affected by the membrane rheology. To whichever aspect the resistance
is weaker, the membrane is subjected to breakup by that mechanism. For example, in Fig. 12b we plot the
angular distribution of principal stress for SK membrane C = 1 at e ¼ 1:8; k ¼ 1; _ct ¼ 2:5. It shows negative
stress in the tip-region as well. However, the minimum stress is smaller than that on the NH capsule. The SK
capsule therefore has a less tendency to form buckles, although it also forms protruded tips (Fig. 12d). A real
capsule with a constitutive relation similar to the SK law, and with less resistance to membrane thinning or
tension, would break up by these mechanisms than buckling.

5. Summary

We have simulated the deformation of a spherical capsule in shear using a front tracking method with an
unstructured grid, and carefully compared its performance with that of boundary element methods. We have
found that in spite of a low-order surface stress calculation, the front tracking method compares very well with
high-order BEMs in predicting capsule deformation, orientation, and tank-treading motions. The unstruc-
tured grid alleviates the numerical difficulty associated with the singularity that occurs near the pole in a struc-
tured curvilinear discretization and allowed simulation where BEM based on structured grids failed. We
encountered numerical difficulties for values of high e unlike computations by Ramanujan and Pozrikidis
[8]. We also predicted results different from those by Lac et al. at higher C values, indicating difficulties of
our method in handling high area-dilatation modulus. We have found an interesting difference in behavior
of a capsule vis-à-vis that of a drop in that for the same deformation the capsule experiences less distortion
of its major and minor axes, and at the same time experiences significantly more elongation in the vorticity
direction. Such an observation alerts us to the limitation of two-dimensional investigation of the capsule prob-
lem. The tank-treading period of a capsule, with different membrane constitutive laws and capillary numbers,
is a function of the capsule deformation and the viscosity ratio, for these two dictates the total circumferential
length a fluid particle has to travel and its tangential velocity.

We also investigate the effects of compressive stresses on membrane buckling at small and large Capillary
numbers. We notice that even though the computed stress is compressive for some cases, at variance with
higher order BEM computation by Lac et al., our simulation does not encounter any buckling. However,
for extremely small capillary numbers, simulation does indicate buckling. In agreement with previous
researchers, we also find that the buckles depend on grid resolution and hence cannot represent the true phys-
ical wavelength. A constitutive equation that includes resistance to bending is required for representing true
buckling physics. We also show by simulating two cases with same deformation in shear and extension that the
destabilizing effect of small compressive stress is countered by tank-treading motion in shear. The shear case
investigated, although computed to be unstable by Lac et al., was found to be stable in our computation. The
finding suggests that only the occurrence of compressive stress cannot be taken as a criterion for buckling
instability. At high capillary numbers, the capsule was found to reach a bounded deformation with protruded
tips, where unstable buckles might develop. The breakup of capsules in applications is complicated by mem-
brane rheology locally at the capsule tips.

The excellent comparison between high-order boundary element methods and our simulation indicates that
front tracking is a robust tool capable of investigating capsule problems. Its advantages primarily lie in its
applicability to more complex situations such as in applications involving viscoelasticity or inertia. There
boundary element, which is based on the Green’s function of the linear Stokes operator, would not be avail-
able without substantial modification that would in turn lose its elegance and intrinsic advantages. Front
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tracking also allows incorporation of other forces, e.g. due to chemical bonding. Such features would prove
critical for biological applications, which are inherently complex in nature.
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